The Explanatory Generalized Graded Unfolding Model: Incorporating Collateral Information to Improve the Latent Trait Estimation Accuracy

Author:

Joo Seang-Hwane1ORCID,Lee Philseok2,Stark Stephen3

Affiliation:

1. University of Kansas, Lawrence, KS, USA

2. George Mason University, Fairfax, VA, USA

3. University of South Florida, Tampa, FL, USA

Abstract

Collateral information has been used to address subpopulation heterogeneity and increase estimation accuracy in some large-scale cognitive assessments. The methodology that takes collateral information into account has not been developed and explored in published research with models designed specifically for noncognitive measurement. Because the accurate noncognitive measurement is becoming increasingly important, we sought to examine the benefits of using collateral information in latent trait estimation with an item response theory model that has proven valuable for noncognitive testing, namely, the generalized graded unfolding model (GGUM). Our presentation introduces an extension of the GGUM that incorporates collateral information, henceforth called Explanatory GGUM. We then present a simulation study that examined Explanatory GGUM latent trait estimation as a function of sample size, test length, number of background covariates, and correlation between the covariates and the latent trait. Results indicated the Explanatory GGUM approach provides scoring accuracy and precision superior to traditional expected a posteriori (EAP) and full Bayesian (FB) methods. Implications and recommendations are discussed.

Publisher

SAGE Publications

Subject

Psychology (miscellaneous),Social Sciences (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3