Affiliation:
1. University of North Carolina at Chapel Hill, USA
Abstract
This study examines adverse consequences of using hierarchical linear modeling (HLM) that ignores rater effects to analyze ratings collected by multiple raters in longitudinal research. The most severe consequence of using HLM ignoring rater effects is the biased estimation of Levels 1 and 2 fixed effects and potentially incorrect significance tests about them. A cross-classified random effects model (CCREM) is proposed as an alternative to HLM. A Monte Carlo study and an empirical evaluation confirm that CCREM performs better than does HLM in dealing with rater effects. Strengths, limitations, and implications of the study are discussed.
Subject
Psychology (miscellaneous),Social Sciences (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献