Bayesian Modal Estimation for the One-Parameter Logistic Ability-Based Guessing (1PL-AG) Model

Author:

Guo Shaoyang1ORCID,Wu Tong2,Zheng Chanjin1,Chen Yanlei3

Affiliation:

1. East China Normal University, Shanghai, China

2. Purdue University, West Lafayette, IN, USA

3. Liaocheng University, Liaocheng, China

Abstract

The calibration of the one-parameter logistic ability-based guessing (1PL-AG) model in item response theory (IRT) with a modest sample size remains a challenge for its implausible estimates and difficulty in obtaining standard errors of estimates. This article proposes an alternative Bayesian modal estimation (BME) method, the Bayesian Expectation-Maximization-Maximization (BEMM) method, which is developed by combining an augmented variable formulation of the 1PL-AG model and a mixture model conceptualization of the three-parameter logistic model (3PLM). By comparing with marginal maximum likelihood estimation (MMLE) and Markov Chain Monte Carlo (MCMC) in JAGS, the simulation shows that BEMM can produce stable and accurate estimates in the modest sample size. A real data example and the MATLAB codes of BEMM are also provided.

Funder

The Flower of Happiness Project in social science of East China Normal University

The Peak Discipline Construction Project of Education at East China Normal University

Publisher

SAGE Publications

Subject

Psychology (miscellaneous),Social Sciences (miscellaneous)

Reference10 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Toward a unified perspective on assessment models, part I: Foundations of a framework;Journal of Mathematical Psychology;2024-09

2. Revisiting the 1PL-AG Item Response Model: Bayesian Estimation and Application;Springer Proceedings in Mathematics & Statistics;2024

3. Mixture‐modelling‐based Bayesian MH‐RM algorithm for the multidimensional 4PLM;British Journal of Mathematical and Statistical Psychology;2023-02-02

4. IRTBEMM: Family of Bayesian EMM Algorithm for Item Response Models;CRAN: Contributed Packages;2020-03-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3