Affiliation:
1. University of South Florida, FL, USA
2. University of Kansas, KS, USA
Abstract
Applications of multidimensional forced choice (MFC) testing have increased considerably over the last 20 years. Yet there has been little, if any, research on methods for linking the parameter estimates from different samples. This research addressed that important need by extending four widely used methods for unidimensional linking and comparing the efficacy of new estimation algorithms for MFC linking coefficients based on the Multi-Unidimensional Pairwise Preference model (MUPP). More specifically, we compared the efficacy of multidimensional test characteristic curve (TCC), item characteristic curve (ICC; Haebara, 1980), mean/mean (M/M), and mean/sigma (M/S) methods in a Monte Carlo study that also manipulated test length, test dimensionality, sample size, percentage of anchor items, and linking scenarios. Results indicated that the ICC method outperformed the M/M method, which was better than the M/S method, with the TCC method being the least effective. However, as the number of items “per dimension” and the percentage of anchor items increased, the differences between the ICC, M/M, and M/S methods decreased. Study implications and practical recommendations for MUPP linking, as well as limitations, are discussed.