Using Interpretable Machine Learning for Differential Item Functioning Detection in Psychometric Tests

Author:

Kraus Elisabeth Barbara1ORCID,Wild Johannes2,Hilbert Sven2

Affiliation:

1. LMU Munich, Germany

2. University of Regensburg, Germany

Abstract

This study presents a novel method to investigate test fairness and differential item functioning combining psychometrics and machine learning. Test unfairness manifests itself in systematic and demographically imbalanced influences of confounding constructs on residual variances in psychometric modeling. Our method aims to account for resulting complex relationships between response patterns and demographic attributes. Specifically, it measures the importance of individual test items, and latent ability scores in comparison to a random baseline variable when predicting demographic characteristics. We conducted a simulation study to examine the functionality of our method under various conditions such as linear and complex impact, unfairness and varying number of factors, unfair items, and varying test length. We found that our method detects unfair items as reliably as Mantel–Haenszel statistics or logistic regression analyses but generalizes to multidimensional scales in a straight forward manner. To apply the method, we used random forests to predict migration backgrounds from ability scores and single items of an elementary school reading comprehension test. One item was found to be unfair according to all proposed decision criteria. Further analysis of the item’s content provided plausible explanations for this finding. Analysis code is available at: https://osf.io/s57rw/?view_only=47a3564028d64758982730c6d9c6c547 .

Funder

Bayerisches Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3