A Note on Standard Errors for Multidimensional Two-Parameter Logistic Models Using Gaussian Variational Estimation

Author:

Xiao Jiaying1ORCID,Wang Chun1ORCID,Xu Gongjun2

Affiliation:

1. University of Washington, WA, USA

2. University of Michigan, MI, USA

Abstract

Accurate item parameters and standard errors (SEs) are crucial for many multidimensional item response theory (MIRT) applications. A recent study proposed the Gaussian Variational Expectation Maximization (GVEM) algorithm to improve computational efficiency and estimation accuracy ( Cho et al., 2021 ). However, the SE estimation procedure has yet to be fully addressed. To tackle this issue, the present study proposed an updated supplemented expectation maximization (USEM) method and a bootstrap method for SE estimation. These two methods were compared in terms of SE recovery accuracy. The simulation results demonstrated that the GVEM algorithm with bootstrap and item priors (GVEM-BSP) outperformed the other methods, exhibiting less bias and relative bias for SE estimates under most conditions. Although the GVEM with USEM (GVEM-USEM) was the most computationally efficient method, it yielded an upward bias for SE estimates.

Funder

National Science Foundation

National Center for Special Education Research, Institute of Education Sciences

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3