Unfolding IRT Models for Likert-Type Items With a Don’t Know Option

Author:

Liu Chen-Wei1,Wang Wen-Chung1

Affiliation:

1. The Education University of Hong Kong, Hong Kong

Abstract

Attitude surveys are widely used in the social sciences. It has been argued that the underlying response process to attitude items may be more aligned with the ideal-point (unfolding) process than with the cumulative (dominance) process, and therefore, unfolding item response theory (IRT) models are more appropriate than dominance IRT models for these surveys. Missing data and don’t know (DK) responses are common in attitude surveys, and they may not be ignorable in the likelihood for parameter estimation. Existing unfolding IRT models often treat missing data or DK as missing at random. In this study, a new class of unfolding IRT models for nonignorable missing data and DK were developed, in which the missingness and DK were assumed to measure a hierarchy of latent traits, which may be correlated with the latent attitude that a test intended to measure. The Bayesian approach with Markov chain Monte Carlo methods was used to estimate the parameters of the new models. Simulation studies demonstrated that the parameters were recovered fairly well, and ignoring nonignorable missingness or DK resulted in poor parameter estimates. An empirical example of a religious belief scale about health was given.

Publisher

SAGE Publications

Subject

Psychology (miscellaneous),Social Sciences (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3