Fitting a Polytomous Item Response Model to Likert-Type Data

Author:

Muraki Eiji1

Affiliation:

1. Educational Testing Service

Abstract

This study examined the application of the MML-EM algorithm to the parameter estimation problems of the normal ogive and logistic polytomous response models for Likert-type items. A rating-scale model was devel oped based on Samejima's (1969) graded response model. The graded response model includes a separate slope parameter for each item and an item response parameter. In the rating-scale model, the item re sponse parameter is resolved into two parameters: the item location parameter, and the category threshold parameter characterizing the boundary between re sponse categories. For a Likert-type questionnaire, where a single scale is employed to elicit different re sponses to the items, this item response model is ex pected to be more useful for analysis because the item parameters can be estimated separately from the threshold parameters associated with the points on a single Likert scale. The advantages of this type of model are shown by analyzing simulated data and data from the General Social Surveys. Index terms: EM algorithm, General Social Surveys, graded response model, item response model, Likert scale, marginal maximum likelihood, polytomous item response model, rating-scale model.

Publisher

SAGE Publications

Subject

Psychology (miscellaneous),Social Sciences (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3