Application of Dimension Reduction to CAT Item Selection Under the Bifactor Model

Author:

Mao Xiuzhen1,Zhang Jiahui2,Xin Tao3

Affiliation:

1. Sichuan Normal University, Chengdu, China

2. Michigan State University, East Lansing, MI, USA

3. Beijing Normal University, Beijing, China

Abstract

Multidimensional computerized adaptive testing (MCAT) based on the bifactor model is suitable for tests with multidimensional bifactor measurement structures. Several item selection methods that proved to be more advantageous than the maximum Fisher information method are not practical for bifactor MCAT due to time-consuming computations resulting from high dimensionality. To make them applicable in bifactor MCAT, dimension reduction is applied to four item selection methods, which are the posterior-weighted Fisher D-optimality (PDO) and three non-Fisher information-based methods—posterior expected Kullback–Leibler information (PKL), continuous entropy (CE), and mutual information (MI). They were compared with the Bayesian D-optimality (BDO) method in terms of estimation precision. When both the general and group factors are the measurement objectives, BDO, PDO, CE, and MI perform equally well and better than PKL. When the group factors represent nuisance dimensions, MI and CE perform the best in estimating the general factor, followed by the BDO, PDO, and PKL. How the bifactor pattern and test length affect estimation accuracy was also discussed.

Funder

national nature science fundation of china

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Psychology (miscellaneous),Social Sciences (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3