Marginal Maximum A Posteriori Item Parameter Estimation for the Generalized Graded Unfolding Model

Author:

Roberts James S.1,Thompson Vanessa M.2

Affiliation:

1. Georgia Institute of Technology, Atlanta, GA, USA,

2. Georgia Institute of Technology, Atlanta, GA, USA

Abstract

A marginal maximum a posteriori (MMAP) procedure was implemented to estimate item parameters in the generalized graded unfolding model (GGUM). Estimates from the MMAP method were compared with those derived from marginal maximum likelihood (MML) and Markov chain Monte Carlo (MCMC) procedures in a recovery simulation that varied sample size, questionnaire length, and number of item response categories. MMAP item parameter estimates were generally the most accurate and had the smallest standard errors on average. In contrast, the accuracy and variability of MML estimates suffered substantially when the number of item response categories was small and the true item locations were extreme. MMAP estimates were also more computationally efficient than corresponding MCMC estimates. Consequently, the MMAP procedure is recommended for estimation of GGUM item parameters.

Publisher

SAGE Publications

Subject

Psychology (miscellaneous),Social Sciences (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3