Advancing the Bayesian Approach for Multidimensional Polytomous and Nominal IRT Models

Author:

Chen Jinsong1

Affiliation:

1. Sun Yat-Sen University, Guangzhou, China

Abstract

It is common to encounter polytomous and nominal responses with latent variables in social or behavior research, and a variety of polytomous and nominal item response theory (IRT) models are available for applied researchers across diverse settings. With its flexibility and scalability, the Bayesian approach using the Markov chain Monte Carlo (MCMC) method demonstrates its great advantages for polytomous and nominal IRT models. However, the potential of the Bayesian approach would not be fully realized without model formulations that can cover various models and effective fit measures for model assessment or criticism. This research first provided formulations for typical models that are representative of different modeling groups. Then, a series of discrepancy measures that can offer diagnostic information for model-data misfit were introduced. Simulation studies showed that the formulation worked as expected, and some of the fit measures were more useful than the others or across different situations.

Publisher

SAGE Publications

Subject

Psychology (miscellaneous),Social Sciences (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3