A Bayesian Robust IRT Outlier-Detection Model

Author:

Öztürk Nicole K.1,Karabatsos George1

Affiliation:

1. The University of Illinois at Chicago, Chicago, IL, USA

Abstract

In psychometric practice, the parameter estimates of a standard item-response theory (IRT) model can become biased when item-response data, of persons’ individual responses to test items, contain outliers relative to the model. Also, the manual removal of outliers can be a time-consuming and difficult task. Besides, removing outliers leads to data information loss in parameter estimation. To address these concerns, a Bayesian IRT model that includes person and latent item-response outlier parameters, in addition to person ability and item parameters, is proposed and illustrated, and is defined by item characteristic curves (ICCs) that are each specified by a robust, Student’s t-distribution function. The outlier parameters and the robust ICCs enable the model to automatically identify item-response outliers, and to make estimates of the person ability and item parameters more robust to outliers. Hence, under this IRT model, it is unnecessary to remove outliers from the data analysis. Our IRT model is illustrated through the analysis of two data sets, involving dichotomous- and polytomous-response items, respectively.

Funder

Division of Social and Economic Sciences

Publisher

SAGE Publications

Subject

Psychology (miscellaneous),Social Sciences (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Model-agnostic unsupervised detection of bots in a Likert-type questionnaire;Behavior Research Methods;2023-11-20

2. Bayesian psychometrics;International Encyclopedia of Education(Fourth Edition);2023

3. A Comparison of Person-Fit Indices to Detect Social Desirability Bias;Educational and Psychological Measurement;2022-10-18

4. A Comprehensive Review and Comparison of CUSUM and Change-Point-Analysis Methods to Detect Test Speededness;Multivariate Behavioral Research;2020-09-02

5. Rasch measurement model: a review of Bayesian estimation for estimating the person and item parameters;Journal of Physics: Conference Series;2019-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3