Affiliation:
1. VU University Amsterdam, Amsterdam, The Netherlands
2. Tufts University School of Dental Medicine, Boston, MA, USA
3. Leiden University, The Netherlands
Abstract
In clinical assessment, efficient screeners are needed to ensure low respondent burden. In this article, Stochastic Curtailment (SC), a method for efficient computerized testing for classification into two classes for observable outcomes, was extended to three classes. In a post hoc simulation study using the item scores on the Center for Epidemiologic Studies–Depression Scale (CES-D) of a large sample, three versions of SC, SC via Empirical Proportions (SC-EP), SC via Simple Ordinal Regression (SC-SOR), and SC via Multiple Ordinal Regression (SC-MOR) were compared at both respondent burden and classification accuracy. All methods were applied under the regular item order of the CES-D and under an ordering that was optimal in terms of the predictive power of the items. Under the regular item ordering, the three methods were equally accurate, but SC-SOR and SC-MOR needed less items. Under the optimal ordering, additional gains in efficiency were found, but SC-MOR suffered from capitalization on chance substantially. It was concluded that SC-SOR is an efficient and accurate method for clinical screening. Strengths and weaknesses of the methods are discussed.
Subject
Psychology (miscellaneous),Social Sciences (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献