Forecasting the Demand for International Business Tourism

Author:

Kulendran Nada,Witt Stephen F.

Abstract

Previous research in the area of tourism demand modeling and forecasting has paid little attention to business tourism. This study provides the most comprehensive comparison to date of the accuracy of modern forecasting methods in the context of international business tourism demand forecasting. Seven forecasting models are examined, including the error correction model and various structural time-series and autoregressive integrated moving average (ARIMA) models. The empirical results show that relative forecasting performance is highly dependent on the length of forecasting horizon, that adding explanatory variables to the structural time-series model does not improve forecasting performance, and that testing for unit roots is likely to yield reasonably accurate results under certain conditions.

Publisher

SAGE Publications

Subject

Tourism, Leisure and Hospitality Management,Transportation,Geography, Planning and Development

Reference18 articles.

1. An analysis of the international tourism demand in Spain

2. Analysis of tourism trends in Spain

3. Seasonal integration and cointegration

4. Statistical analysis of cointegration vectors

5. Johansen, S., and K. Juselius (1990). “Maximum Likelihood Estimation and Inference on Cointegration with Application to the Demand for Money.” Oxford Bulletin of Economics and Statistics, 52: 169-209.

Cited by 110 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3