An Evaluation of the Use of Ordinary Least Squares for Estimating Tourism Demand Models

Author:

Morley Clive L.

Abstract

Estimating tourism demand models involves a set of related equations with errors that may not satisfy the common assumptions of being independent, with constant variance and normal distribution. In such circumstances, seemingly unrelated regression estimation may be considered a better estimation technique than ordinary least squares. Results from a simulation exercise, however, show that generally there is little difference between ordinary least squares and seemingly unrelated regression. The ordinary least squares technique performs well, and the results give little reason to use more complex estimation techniques. Another feature of tourism data is that strong growth in tourist numbers is often observed. This feature implies that models in which such series are the dependent variable are not consistently estimated by least squares methods. A percentage error loss function is proposed as a more appropriate criterion for estimating tourist data of this type.

Publisher

SAGE Publications

Subject

Tourism, Leisure and Hospitality Management,Transportation,Geography, Planning and Development

Reference11 articles.

1. Chu Te G. O. (1994). “Forecasting Australian-Generated Tourism Activity.” In Tourism Research and Education in Australia: Proceedings from the Tourism Research and Education Conferences, edited by Faulkner B., Fagance M., Davidson M., Craig-Smith S. Canberra: Bureau of Tourism Research, pp. 27–36.

2. Applications of robust estimation techniques in demand analysis

3. The Study of International Tourism Demand: A Survey of Practice

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3