Influence of L-lysine amino acid on the HIV-1 RNA replication in vitro

Author:

Butorov Evgeny Vlad1

Affiliation:

1. The Municipal Center of HIV/AIDS prophylaxis, Surgut, Russian Federation

Abstract

Background Virus replication strongly depends on host metabolic machinery and essential cellular factors, in particular, on amino acid profiles. Amino acids play an important role in the pathogenesis of all virus-related infections both as basic substrates for protein synthesis and as regulators in many metabolic pathways, including gene expression. The inhibitory effects of deficiency or excess of these essential elements on virus replication are widely appreciated. Although the same interrelationship between host cellular factors and HIV have been recognized for a long time, the effects of amino acids on HIV-1 RNA replication dynamic is not yet well documented. Our aim was to determine in this pilot study the direct effect of L-lysine amino acid on HIV-1 RNA replication in vitro in HIV-infected patients. Methods A total of 100 HIV-1-infected males without highly active antiretroviral therapy (HAART) were monitored in our center. The patients were in stage A of the disease according to the 1993 Centers for Disease Control (CDC) classification system for HIV-infection. Patients with HIV were enrolled in one stage (A) of the disease with the average amount CD4 lymphocytes in the range of 200–300 cells/µL at the time of sample acquisition. For evaluation of the effects of essential L-lysine amino acid on HIV-1 RNA replication level, we used a model of amino acid-excess system in vitro following incubation of plasma samples for 24 h at 25°C. Quantitative HIV-1 RNA assay was performed using (RT-PCR) reverse-transcriptase polymerase chain reaction (Rotor-Gene Q, QIAGEN, Germany). Results The mean HIV-1 RNA levels were significantly higher in the enriched peripheral blood mononuclear cells plasma samples HIV-infected subjects after 24 h incubation at 25°C temperature than in the plasma samples the same patients studied on the date of blood tests ( p < 0.0001). The number of HIV-1 RNA copies increased in 1.5 times. We observed that in plasma of the same HIV-infected patients after adding L-lysine and following incubation in vitro, viral load increased significantly in comparison with standard samples ( p < 0.0001). The increased viral load was found in 100/92 (92%) of HIV-infected subjects. The average number of HIV-1 RNA copies in samples had increased by 4.0 times. However, we found no difference in HIV-1 RNA levels after replacement of L-lysine for L-arginine in comparison samples in the same HIV-infected patients. It is obvious that the addition of L-arginine does not increase viral replication in vitro as L-lysine amino acid supplement does. Additionally, no increase in viral load was determined after adding L-lysine and non toxic doses of its inhibitor (L-lysine alpha-oxidase) in plasma samples. Conclusions The results show that L-lysine amino acid excess is characterized by significant increased of HIV-1 RNA copies in enriched peripheral blood mononuclear cells plasma samples of HIV-infected patients. There was evidence for an association between L-lysine supplementation and HIV-1 RNA replication and the level changes of this host essential nutritional element play a key role in the synthesis of the virus proteins and in transcription initiation of the retrovirus life cycle. High intake of L-lysine amino acid may increase the risk of high viral load, subsequent acceleration of immunosuppression and HIV progression. Overall results demonstrate that the simple L-lysine-related model in vitro can be widely used for practical purposes to evaluate HIV-1 RNA replication dynamic, disease prognosis and new approaches in treatment of the patients with human immunodeficiency virus. Although the impact mechanism of L-lysine amino acid on the viral load in the pathogenesis of HIV-infection is at present conjectural and requires further development, the results highlight an interesting target in antiviral therapy, and this statement remains to be proved in further research and clinical trials.

Publisher

SAGE Publications

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3