Affiliation:
1. Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, 1–8 Yamadaoka, Suita-Osaka 5650871, Japan; and
2. Department of Pediatric Dentistry, Nagasaki University School of Dentistry, 1-7-1 Sakamoto, Nagasaki 8528588, Japan;
Abstract
Glucosyltransferases (GTF)-I and GTF-SI of Streptococcus mutans synthesize water-insoluble and both water-soluble and -insoluble glucans, respectively, and play essential roles in the sucrose-dependent adhesion of the organism to tooth surfaces. To examine the interactions of different GTFs on artificial biofilm formed by S. mutans and other oral streptococci, we generated GTF-I- and GTF-SI-hyperproducing isogenic mutant strains. Transformant B42-21, which hyperexpressed GTF-SI, exhibited firm adhesion in the presence of sucrose, whereas transformant B42-10, which hyperexpressed GTF-I, failed to exhibit firm adhesion. Furthermore, co-culture of transformant B42-21 with water-soluble glucan-synthesizing Streptococcus sanguinis yielded firm adhesion, while the addition of dextran T10 to B42-21 growing culture had no effect on adhesion. These findings suggest that GTF-SI has a strong effect on sucrose-dependent adhesion and is essential for biofilm formation on smooth surfaces, in cooperation with water-soluble glucans synthesized de novo by oral streptococci that inherently lack cell adhesion ability.
Cited by
74 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献