Root-end Filling Materials Alter Fibroblast Differentiation

Author:

Bonson S.12,Jeansonne B.G.12,Lallier T.E.12

Affiliation:

1. Department of Endodontics, Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Science Center, School of Dentistry; and

2. Department of Cell Biology and Anatomy, Center of Excellence in Oral and Craniofacial Biology, Box 128, Louisiana State University Health Science Center, School of Dentistry, 1100 Florida Avenue, New Orleans, LA 70119;

Abstract

Root-end filling materials are commonly used following endodontic surgical procedures; however, their effect on adjacent soft tissues is poorly understood. We predict that, due to the differences in their chemical composition, these materials will have profoundly different effects on the survival and differentiation of fibroblasts. Many of the root-end filling materials examined were initially cytotoxic to both PDL and gingival fibroblasts in co-culture experiments; however, this was reduced after the materials were washed in either mineral trioxide aggregate (MTA) or hybrid ionomere composite resin (HICR) for 2 wks. Additionally, PDL fibroblasts displayed enhanced proliferation on MTA and survival on amalgam when compared with gingival fibroblasts. MTA preferentially induced alkaline phosphatase expression and activity in both PDL and gingival fibroblasts. In contrast, HICR inhibited alkaline phosphatase expression and activity. In addition, MTA and HICR repressed pleiotrophin in PDL fibroblasts, while HICR repressed periostin in both fibroblasts. Thus, root-end filling materials differentially affect periodontal fibroblast differentiation. Abbreviations: mineral trioxide aggregate (MTA), zinc-oxide eugenol cement (ZOEC), hybrid ionomer composite resin (HICR), reverse-transcriptase polymerase chain-reaction (RT-PCR).

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3