Minimizing Dentinal Fluid Flow Associated with Gap Formation

Author:

Ratih D.N.1,Palamara J.E.A.1,Messer H.H.1

Affiliation:

1. Department of Restorative Dentistry, School of Dental Science, The University of Melbourne, 720 Swanston Street, Melbourne, Victoria 3010, Australia

Abstract

The relationship between gap formation and outward fluid flow and procedures to minimize both phenomena were investigated in extracted human premolars restored in vitro with MOD composite restorations. We hypothesized that either glass-ionomer cement (GIC) liners or low-shrinkage composite could reduce fluid flow related to gap formation. Two groups restored with bonding agents with either high- or low-shrinkage resin composites, and 2 groups restored by either conventional or light-cured GIC liner plus resin composite were compared (8 teeth/group). Fluid flow was measured with an automated apparatus. Baseline fluid flow was low and unchanged after bonding, but increased sharply (though transiently) after teeth were lined with GIC. Outward flow was significantly greater with conventional than with light-cured GIC. Inward fluid flow occurred during light-curing, followed by extensive, prolonged outward flow after curing. Low-shrinkage composite or GIC liners reduced gap formation and limited outward fluid flow. GIC liners promoted outward fluid flow during their setting reactions. Abbreviations: GIC, glass-ionomer cement; CEJ, cemento-enamel junction; MOD, mesio-occluso-distal; SEM, scanning electron microscopy.

Publisher

SAGE Publications

Subject

General Dentistry

Reference28 articles.

1. Cuspal movement and microleakage in premolar teeth restored with a packable composite cured in bulk or in increments

2. Alomari QD, Reinhardt JW, Boyer DB -2001- Effect of liners on cusp deflection and gap formation in composite restorations. Oper Dent 26:406–411.

3. Brännström M -1984- Communication between the oral cavity and the dental pulp associated with restorative treatment. Oper Dent 9:57–68.

4. Dentinal fluid dynamics in human teeth, in vivo

5. Volume of the internal gap formed under composite restorations in vitro

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3