Affiliation:
1. ACTA, Department of Dental Materials Science, Louwesweg 1, 1066 EA Amsterdam, The Netherlands; and
2. Universiteit Utrecht-Debye Institute, Department of Inorganic Chemistry and Catalysis, Sorbonnelaan 16, 3508 TB Utrecht, Netherlands;
Abstract
In this study, we explored the reduction of shrinkage stresses in restored teeth by stimulating viscous flow of adhesive restoratives during curing, by increasing the TEGDMA/BisGMA ratio in the resin of composite restoratives. We studied a series of experimental two-paste composites with different amounts of TEGDMA (30, 50, 70 wt%, respectively) in the resin by mechanical testing, infrared spectroscopy, and dilatometry, to determine how comonomer composition affects the mechanical and chemical properties of the composite during curing. It was found that the polymerization rate of BisGMA-TEGDMA composites is indicative of the viscoelastic behavior during curing: The higher the reactivity, the higher the stiffness and viscosity development. Composites with 50 wt% TEGDMA in the resin displayed the highest maximum polymerization rate. High amounts of TEGDMA in the resin only modestly increased the pre-gel viscous flow (= lowered viscosity) property of composites. Of these composites, high post-gel shrinkage is the decisive factor in high shrinkage stress development.
Cited by
110 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献