Dentin Erosion Simulation by Cantilever Beam Fatigue and pH Change

Author:

Staninec M.123,Nalla R.K.123,Hilton J.F.123,Ritchie R.O.123,Watanabe L.G.123,Nonomura G.123,Marshall G.W.123,Marshall S.J.123

Affiliation:

1. UCSF School of Dentistry, Box 0758, San Francisco, CA 94143, USA;

2. Materials Sciences Division, Lawrence Berkeley National Laboratory, CA, USA;

3. Division of Biostatistics, UCSF School of Medicine, San Francisco, CA, USA;

Abstract

Exposed root surfaces frequently exhibit non-carious notches representing material loss by abrasion, erosion, and/or abfraction. Although a contribution from mechanical stress is often mentioned, no definitive proof exists of a cause-effect relationship. To address this, we examined dimensional changes in dentin subjected to cyclic fatigue in two different pH environments. Human dentin cantilever-beams were fatigued under load control in pH = 6 (n = 13) or pH = 7 (n = 13) buffer, with a load ratio ( R = minimum load/maximum load) of 0.1 and frequency of 2 Hz, and stresses between 5.5 and 55 MPa. Material loss was measured at high- and low-stress locations before and after cycling. Of the 23 beams, 7 withstood 1,000,000 cycles; others cracked earlier. Mean material loss in high-stress areas was greater than in low-stress areas, and losses were greater at pH = 6 than at pH = 7, suggesting that mechanical stress and lower pH both accelerate erosion of dentin surfaces.

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3