Hydrogen gas treatment improves survival in a rat model of crush syndrome by ameliorating rhabdomyolysis

Author:

Yumoto Tetsuya1ORCID,Aokage Toshiyuki1,Hirayama Takahiro1,Yamamoto Hirotsugu1,Obara Takafumi1,Nojima Tsuyoshi1,Naito Hiromichi1ORCID,Nakao Atsunori1

Affiliation:

1. Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan

Abstract

Objectives Crush syndrome (CS) is characterized by a systemic manifestation of traumatic rhabdomyolysis, leading to multiple organ dysfunction and death. Ischemia-reperfusion (IR) injury is commonly responsible for systemic response. Extending studies have shown that hydrogen gas treatment ameliorated IR injury in numerous experimental models; however, its effect on CS has not been well examined. This study aimed to investigate the effects of hydrogen gas inhalation following crush injury in an experimental model of CS. Methods Male Sprague-Dawley rats were subjected to experimental CS by applying a total of 3.0 kg weight to both hindlimb under general anesthesia for 6 h. Immediately after decompression, the animals were randomly placed in a gas chamber filled with either air or 1.3% hydrogen gas. Animals were sacrificed 18 h or 24 h following gas exposure for non-survival studies or for survival study, respectively. Results The rats with hydrogen treatment ( n = 6) had a higher 24-h survival than the rats with air treatment ( n = 9) (100% vs. 44%, p = 0.035). Lactate concentrations (2.9 ± 0.2 vs. 2.2 ± 0.2 mmol/L, p = 0.040) and creatine kinase (34,178 ± 13,580 vs. 5005 ± 842 IU/L, p = 0.016) were lower in the hydrogen group compared with the air group 18 h after decompression ( n = 4 in the air group, and n = 5 in the H2 group). Histological analysis revealed that the damage to the rectus femoris muscle and kidney appeared to be ameliorated by hydrogen treatment. Conclusion Hydrogen gas inhalation may be a promising therapeutic approach in the treatment of CS.

Publisher

SAGE Publications

Subject

Immunology,Immunology and Allergy,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3