Atrial natriuretic peptide protects against gut barrier injury through PLC-γ1/ROS feedback loop in rats following traumatic hemorrhagic shock

Author:

Jiang Shou-Yin1234ORCID,Rao Tai-Wen1234ORCID,Shen Ye-Hua56,Zhao Xiao-Gang1234

Affiliation:

1. Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou China

2. Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou China

3. Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hang-zhou, China

4. Research Institute of Emergency Medicine, Zhejiang University, Hangzhou China

5. Department of Radiology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China

6. National Clinical Research Center for Child Heath, Hangzhou, China

Abstract

Introduction The mechanisms underlying the protective effects of atrial natriuretic peptide (ANP) on the gut barrier during traumatic hemorrhagic shock (THS) remain elusive. This study aimed to explore the potential role of ANP in safeguarding against gut barrier dysfunction after THS, focusing on the PLC-γ1/ROS feedback loop. Methods In our THS rat model, we randomly allocated male Sprague-Dawley rats to receive intravenous ANP with or without a concurrent NADPH oxidase/p38 MAPK inhibitor during the shock phase. After 24 h, we assessed circulatory and jejunal ANP, ROS, intestinal tight junction proteins, and apoptosis to evaluate the effects of ANP on the gut barrier and its interplay with intestinal ANP and ROS. Rat small intestinal epithelial cells (IECs) were also treated with ANP and subjected to hypoxia/re-oxygenation injury, with or without PI3K/PLC inhibition, to elucidate the relationship between ANP/ROS signaling and PLC-γ1. Furthermore, we modulated PLC-γ1 expression in these IECs to examine its impact on ROS and ANP production. Results Intravenous ANP administration at 0.025 μg/kg/min during THS significantly increased intestinal ANP and ROS levels at 24 h. ANP treatment enhanced the expression of intestinal tight junction proteins and reduced IEC apoptosis. Inhibition of circulatory ROS diminished intestinal ANP levels, while suppression of circulatory ANP led to a reduction in intestinal ROS. Decreasing PLC-γ1 expression in hypoxia/re-oxygenation-treated IECs resulted in lower ROS and ANP levels, whereas augmenting PLC-γ1 expression did not alter these levels. Additionally, PI3K inhibition markedly decreased PLC-γ1 expression in these cells. Conclusion ANP-induced protection of the intestinal barrier in THS is mediated by an intrinsic PLC-γ1/ROS positive feedback loop. ANP preserves gut barrier integrity and reduces IEC apoptosis through this mechanism. Further studies are warranted to investigate the interaction between IECs and other cellular components within the PLC-γ1/ROS loop.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3