Genes Differentially Expressed Across Major Arteries Are Enriched in Endothelial Dysfunction-Related Gene Sets: Implications for Relative Inter-artery Atherosclerosis Risk

Author:

Brown Paul A1ORCID

Affiliation:

1. Department of Basic Medical Sciences, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Kingston, Jamaica

Abstract

Atherosclerosis differs across major arteries. Although the biological basis is not fully understood, limited evidence of genetic differences has been documented. This study, therefore, was aimed to identify differentially expressed genes between clinically relevant major arteries and investigate their enrichment in endothelial dysfunction-related gene sets. A bioinformatic analysis of publicly available gene-level read counts for coronary, aortic, and tibial arteries was performed. Differential gene expression was conducted with DeSeq2 at a false discovery rate of 0.05. Differentially expressed genes were then subjected to over-representation analysis and active-subnetwork-oriented enrichment analysis, both at a false discovery rate of 0.005. Enriched terms common to both analyses were categorized for each contrast into immunity/inflammation-, membrane biology-, lipid metabolism-, and coagulation-related terms, and the top differentially expressed genes validated against Swiss Institute of Bioinformatics’ Bgee database. There was mostly upregulation of differentially expressed genes for the coronary/tibial and aorta/tibial contrasts, but milder changes for the coronary/aorta contrast. Transcriptomic differences between coronary or aortic versus tibial samples largely involved immunity/inflammation-, membrane biology-, lipid metabolism-, and coagulation-related genes, suggesting potential to modulate endothelial dysfunction and atherosclerosis. These results imply atheroprone coronary and aortic environments compared with tibial artery tissue, which may explain observed relative inter-artery atherosclerosis risk.

Funder

NIH

Publisher

SAGE Publications

Reference82 articles.

1. The Global Burden of Cardiovascular Diseases and Risk

2. Epidemiology of Atherosclerosis and the Potential to Reduce the Global Burden of Atherothrombotic Disease

3. Global Epidemiology of Ischemic Heart Disease: Results from the Global Burden of Disease Study

4. WHO. The top 10 causes of death. World Health Organization. Accessed August 10, 2023. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3