Sequence, Secondary Structure, and Phylogenetic Conservation of MicroRNAs in Arabidopsis thaliana

Author:

Mazhar Muhammad Waqar1,Yusof Nik Yusnoraini2,Shaheen Tayyaba1,Saif Saira1,Raza Ahmad3,Mazhar Fatima4

Affiliation:

1. Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan

2. Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Malaysia

3. Department of Biological Sciences, Nuclear Institute for Agriculture & Biology, Faisalabad, Pakistan

4. Department of Microbiology, Muhammad Nawaz Sharif University of Agriculture, Multan, Multan, Pakistan

Abstract

MicroRNAs are small non-coding RNA molecules that are produced in a cell endogenously. They are made up of 18 to 26 nucleotides in strength. Due to their evolutionary conserved nature, most of the miRNAs provide a logical basis for the prediction of novel miRNAs and their clusters in plants such as sunflowers related to the Asteraceae family. In addition, they participate in different biological processes of plants, including cell signaling and metabolism, development, growth, and tolerance to (biotic and abiotic) stresses. In this study profiling, conservation and characterization of novel miRNA possessing conserved nature in various plants and their targets annotation in sunflower (Asteraceae) were obtained by using various computational tools and software. As a result, we looked at 152 microRNAs in Arabidopsis thaliana that had already been predicted. Drought tolerance stress is mediated by these 152 non-coding RNAs. Following that, we used local alignment to predict novel microRNAs that were specific to Helianthus annuus. We used BLAST to do a local alignment, and we chose sequences with an identity of 80% to 100%. MIR156a, MIR164a, MIR165a, MIR170, MIR172a, MIR172b, MIR319a, MIR393a, MIR394a, MIR399a, MIR156h, and MIR414 are the new anticipated miRNAs. We used MFold to predict the secondary structure of new microRNAs. We used conservation analysis and phylogenetic analysis against a variety of organisms, including Gossypium hirsutum, H. annuus, A. thaliana, Triticum aestivum, Saccharum officinarum, Zea mays, Brassica napus, Solanum tuberosum, Solanum lycopersicum, and Oryza sativa, to determine the evolutionary history of these novel non-coding RNAs. Clustal W was used to analyze the evolutionary history of discovered miRNAs.

Publisher

SAGE Publications

Subject

Applied Mathematics,Computational Mathematics,Computer Science Applications,Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3