Decoding Human Genome Regulatory Features That Influence HIV-1 Proviral Expression and Fate Through an Integrated Genomics Approach

Author:

Ruess Holly1ORCID,Lee Jeon1ORCID,Guzman Carlos23,Malladi Venkat S1ORCID,D’Orso Iván2ORCID

Affiliation:

1. Lyda Hill Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX, USA

2. Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA

3. Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA

Abstract

Fundamental principles of HIV-1 integration into the human genome have been revealed in the past 2 decades. However, the impact of the integration site on proviral transcription and expression remains poorly understood. Solving this problem requires the analysis of multiple genomic datasets for thousands of proviral integration sites. Here, we generated and combined large-scale datasets, including epigenetics, transcriptome, and 3-dimensional genome architecture to interrogate the chromatin states, transcription activity, and nuclear sub-compartments around HIV-1 integrations in Jurkat CD4+ T cells to decipher human genome regulatory features shaping the transcription of proviral classes based on their position and orientation in the genome. Through a Hidden Markov Model and ranked informative values prior to a machine learning logistic regression model, we defined nuclear sub-compartments and chromatin states contributing to genomic architecture, transcriptional activity, and nucleosome density of regions neighboring the integration site, as additive features influencing HIV-1 expression. Our integrated genomics approach also allows for a robust experimental design, in which HIV-1 can be genetically introduced into precise genomic locations with known regulatory features to assess the relationship of integration positions to viral transcription and fate.

Funder

national institutes of health

cancer prevention and research institute of texas

Publisher

SAGE Publications

Subject

Applied Mathematics,Computational Mathematics,Computer Science Applications,Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3