Affiliation:
1. Department of Animal Production, College of Agriculture, Al-Qasim Green University, Al-Qasim, Iraq
Abstract
Objectives: Litter size is a crucial economic factor in the sheep industry. Several factors and genes influence litter size, making the identification of genes or loci involved a genetic challenge. Gonadotropin-inhibitory hormone ( GnIH) is one of several genes that influence sheep’s reproductive traits. Thus, this study aimed to investigate whether variations in the GnIH gene affect the reproductive performance of Awassi and Hamdani ewes. Methods: DNA was extracted from 99 single-progeny ewes and 101 twin ewes. The polymerase chain reaction (PCR) produced amplicons of 262 bp, 275 bp, and 284 bp from exons 1, 2, and 3 of the GnIH gene. Single-strand conformational polymorphism (SSCP) technique was used for genotyping experiments. Sequencing and in silico analysis were performed on each set of SSCP-resolved bands. Results: Two genotypes of 262 bp amplicons were found: TT and TC. Sequence analysis revealed a novel missense mutation in the TC genotype at position c.122T>C. Five in silico tools were used to assess the impact of this mutation on GnIH protein structure, function, and stability, all of them demonstrated a deleterious effect. An analysis of statistical data revealed a strong correlation between the c.122T>C single-nucleotide polymorphism (SNP) and reproductive performance. Ewes with the SNP 122T>C exhibited a significant increase in litter size, twinning rates, lambing rates, and days to lambing when compared with ewes with the TT genotype. A lower number of lambs were born to ewes with the TT genotype than those with the TC genotype. Conclusion: These results concluded that the c.122T>C SNP variant positively influences the reproductive performance of Awassi and Hamdani sheep. Sheep that carry the c.122T>C SNP show higher litter size and increased productivity.