Identification of Putative Drug Targets in Highly Resistant Gram-Negative Bacteria; and Drug Discovery Against Glycyl-tRNA Synthetase as a New Target

Author:

Fereshteh Sepideh1,Noori Goodarzi Narjes2,Kalhor Hourieh3,Rahimi Hamzeh45,Barzi Seyed Mahmoud1,Badmasti Farzad16

Affiliation:

1. Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran

2. Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

3. Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran

4. Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran

5. Texas Biomedical Research Institute, San Antonio, TX, USA

6. Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran

Abstract

Background: Gram-negative bacterial infections are on the rise due to the high prevalence of multidrug-resistant bacteria, and efforts must be made to identify novel drug targets and then new antibiotics. Methods: In the upstream part, we retrieved the genome sequences of 4 highly resistant Gram-negative bacteria (e.g., Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Enterobacter cloacae). The core proteins were assessed to find common, cytoplasmic, and essential proteins with no similarity to the human proteome. Novel drug targets were identified using DrugBank, and their sequence conservancy was evaluated. Protein Data Bank files and STRING interaction networks were assessed. Finally, the aminoacylation cavity of glycyl-tRNA synthetase (GlyQ) was virtually screened to identify novel inhibitors using AutoDock Vina and the StreptomeDB library. Ligands with high binding affinity were clustered, and then the pharmacokinetics properties of therapeutic agents were investigated. Results: A total of 6 common proteins (e.g., RP-L28, RP-L30, RP-S20, RP-S21, Rnt, and GlyQ) were selected as novel and widespread drug targets against highly resistant Gram-negative superbugs based on different criteria. In the downstream analysis, virtual screening revealed that Rimocidin, Flavofungin, Chaxamycin, 11,11′-O-dimethyl-14′-deethyl-14′-methylelaiophylin, and Platensimycin were promising hit compounds against GlyQ protein. Finally, 11,11′-O-dimethyl-14′-deethyl-14′-methylelaiophylin was identified as the best potential inhibitor of GlyQ protein. This compound showed high absorption capacity in the human intestine. Conclusion: The results of this study provide 6 common putative new drug targets against 4 highly resistant and Gram-negative bacteria. Moreover, we presented 5 different hit compounds against GlyQ protein as a novel therapeutic target. However, further in vitro and in vivo studies are needed to explore the bactericidal effects of proposed hit compounds against these superbugs.

Publisher

SAGE Publications

Subject

Applied Mathematics,Computational Mathematics,Computer Science Applications,Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3