Tackling the Challenges of FASTQ Referential Compression

Author:

Guerra Aníbal12ORCID,Lotero Jaime1,Aedo José Édinson1,Isaza Sebastián1ORCID

Affiliation:

1. Facultad de Ciencias y Tecnología (FaCyT), Universidad de Carabobo (UC), Valencia, Venezuela

2. Facultad de Ingeniería, Universidad de Antioquia (UdeA), Medellín, Colombia

Abstract

The exponential growth of genomic data has recently motivated the development of compression algorithms to tackle the storage capacity limitations in bioinformatics centers. Referential compressors could theoretically achieve a much higher compression than their non-referential counterparts; however, the latest tools have not been able to harness such potential yet. To reach such goal, an efficient encoding model to represent the differences between the input and the reference is needed. In this article, we introduce a novel approach for referential compression of FASTQ files. The core of our compression scheme consists of a referential compressor based on the combination of local alignments with binary encoding optimized for long reads. Here we present the algorithms and performance tests developed for our reads compression algorithm, named UdeACompress. Our compressor achieved the best results when compressing long reads and competitive compression ratios for shorter reads when compared to the best programs in the state of the art. As an added value, it also showed reasonable execution times and memory consumption, in comparison with similar tools.

Funder

departamento administrativo de ciencia, tecnología e innovación

universidad de antioquia

Publisher

SAGE Publications

Subject

Applied Mathematics,Computational Mathematics,Computer Science Applications,Molecular Biology,Biochemistry

Reference45 articles.

1. Sequence Alignment / Map Format Specification. The SAM/BAM Format Specification Working Group. 2015:1–16. https://samtools.github.io/hts-specs/SAMv1.pdf

2. A universal algorithm for sequential data compression

3. Compression of individual sequences via variable-rate coding

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3