ProTG4: A Web Server to Approximate the Sequence of a Generic Protein From an in Silico Library of Translatable G-Quadruplex (TG4)-Mapped Peptides

Author:

Kundu Siddhartha1ORCID

Affiliation:

1. Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India

Abstract

An RNA G-quadruplex in the protein coding segment of mRNA is translatable [Formula: see text] and may potentially impact protein translation. This can be consequent to staggered ribosomal synthesis and/or result in an increased frequency of missense translational events. A mathematical model of the peptides that encompass the substituted amino acids, ie, the [Formula: see text]-mapped peptidome, has been previously studied. However, the significance and relevance to disease biology of this model remains to be established. ProTG4 computes a confidence-of-sequence-identity [Formula: see text]-score, which is the average weighted length of every matched [Formula: see text]-mapped peptide in a generic protein sequence. The weighted length is the product of the length of the peptide and the probability of its non-random occurrence in a library of randomly generated sequences of equivalent lengths. This is then averaged over the entire length of the protein sequence. ProTG4 is simple to operate, has clear instructions, and is accompanied by a set of ready-to-use examples. The rationale of the study, algorithms deployed, and the computational pipeline deployed are also part of the web page. Analyses by ProTG4 of taxonomically diverse protein sequences suggest that there is significant homology to [Formula: see text]-mapped peptides. These findings, especially in potentially infectious and infesting agents, offer plausible explanations into the aetiology and pathogenesis of certain proteopathies. ProTG4 can also provide a quantitative measure to identify and annotate the canonical form of a generic protein sequence from its known isoforms. The article presents several case studies and discusses the relevance of ProTG4-assisted peptide analysis in gaining insights into various mechanisms of disease biology (mistranslation, alternate splicing, amino acid substitutions).

Funder

all-india institute of medical sciences

Publisher

SAGE Publications

Subject

Applied Mathematics,Computational Mathematics,Computer Science Applications,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3