In Silico Identification and Functional Characterization of Conserved miRNAs in the Genome of Cryptosporidium parvum

Author:

Ahsan Md. Irtija1,Chowdhury Md. Shahidur Rahman2,Das Moumita1,Akter Sharmin1,Roy Sawrab3,Sharma Binayok2,Akhand Rubaiat Nazneen4,Hasan Mahmudul5,Uddin Md Bashir2ORCID,Ahmed Syed Sayeem Uddin1

Affiliation:

1. Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet, Bangladesh

2. Department of Medicine, Sylhet Agricultural University, Sylhet, Bangladesh

3. Department of Microbiology and Immunology, Sylhet Agricultural University, Sylhet, Bangladesh

4. Department of Biochemistry and Chemistry, Sylhet Agricultural University, Sylhet, Bangladesh

5. Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh

Abstract

Cryptosporidium parvum, a predominant causal agent of a fatal zoonotic protozoan diarrhoeal disease called cryptosporidiosis, bears a worldwide public health concern for childhood mortality and poses a key threat to the dairy and water industries. MicroRNAs (miRNAs), small but powerful posttranscriptional gene silencing RNA molecules, regulate a variety of molecular, biological, and cellular processes in animals and plants. As to the present date, there is a paucity of information regarding miRNAs of C. parvum; hence, this study was used to identify miRNAs in the organism using a comprehensible expressed sequence tag–based homology search approach consisting of a series of computational screening process from the identification of putative miRNA candidates to the functional annotation of the important gene targets in C. parvum. The results revealed a conserved miRNA that targeted 487 genes in the model organism ( Drosophila melanogaster) and 85 genes in C. parvum, of which 11 genes had direct involvements in several crucial virulence factors such as environmental oocyst protection, excystation, locomotion, adhesion, invasion, stress protection, intracellular growth, and survival. Besides, 20 genes showed their association with various major pathways dedicated for the ribosomal biosynthesis, DNA repair, transportation, protein production, gene expression, cell cycle, cell proliferation, development, immune response, differentiation, and nutrient metabolism of the organism in the host. Thus, this study provides a strong evidence of great impact of identified miRNA on the biology, virulence, and pathogenesis of C. parvum. Furthermore, the study suggests that the detected miRNA could be a potential epigenomic tool for controlling the protozoon through silencing those virulent and pathway-related target genes.

Publisher

SAGE Publications

Subject

Applied Mathematics,Computational Mathematics,Computer Science Applications,Molecular Biology,Biochemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3