Prediction of Bacterial sRNAs Using Sequence-Derived Features and Machine Learning

Author:

Jha Tony1,Mendel Jovinna2,Cho Hyuk3,Choudhary Madhusudan2

Affiliation:

1. Department of Mathematics, University of California, Berkeley, Berkeley, CA, USA

2. Department of Biological Sciences, Sam Houston State University, Huntsville, TX, USA

3. Department of Computer Science, Sam Houston State University, Huntsville, TX, USA

Abstract

Small ribonucleic acid (sRNA) sequences are 50–500 nucleotide long, noncoding RNA (ncRNA) sequences that play an important role in regulating transcription and translation within a bacterial cell. As such, identifying sRNA sequences within an organism’s genome is essential to understand the impact of the RNA molecules on cellular processes. Recently, numerous machine learning models have been applied to predict sRNAs within bacterial genomes. In this study, we considered the sRNA prediction as an imbalanced binary classification problem to distinguish minor positive sRNAs from major negative ones within imbalanced data and then performed a comparative study with six learning algorithms and seven assessment metrics. First, we collected numerical feature groups extracted from known sRNAs previously identified in Salmonella typhimurium LT2 (SLT2) and Escherichia coli K12 ( E. coli K12) genomes. Second, as a preliminary study, we characterized the sRNA-size distribution with the conformity test for Benford’s law. Third, we applied six traditional classification algorithms to sRNA features and assessed classification performance with seven metrics, varying positive-to-negative instance ratios, and utilizing stratified 10-fold cross-validation. We revisited important individual features and feature groups and found that classification with combined features perform better than with either an individual feature or a single feature group in terms of Area Under Precision-Recall curve (AUPR). We reconfirmed that AUPR properly measures classification performance on imbalanced data with varying imbalance ratios, which is consistent with previous studies on classification metrics for imbalanced data. Overall, eXtreme Gradient Boosting (XGBoost), even without exploiting optimal hyperparameter values, performed better than the other five algorithms with specific optimal parameter settings. As a future work, we plan to extend XGBoost further to a large amount of published sRNAs in bacterial genomes and compare its classification performance with recent machine learning models’ performance.

Funder

NSF

Publisher

SAGE Publications

Subject

Applied Mathematics,Computational Mathematics,Computer Science Applications,Molecular Biology,Biochemistry

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3