Unraveling Genome Evolution Throughout Visual Analysis: The XCout Portal

Author:

Diaz-del-Pino Sergio1ORCID,Perez-Wohlfeil Esteban1,Trelles Oswaldo1

Affiliation:

1. Computer Architecture Department, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Malaga, Spain

Abstract

Due to major breakthroughs in sequencing technologies throughout the last decades, the time and cost per sequencing experiment have reduced drastically, overcoming the data generation barrier during the early genomic era. Such a shift has encouraged the scientific community to develop new computational methods that are able to compare large genomic sequences, thus enabling large-scale studies of genome evolution. The field of comparative genomics has proven itself invaluable for studying the evolutionary mechanisms and the forces driving genome evolution. In this line, a full genome comparison study between 2 species requires a quadratic number of comparisons in terms of the number of sequences (around 400 chromosome comparisons in the case of mammalian genomes); however, when studying conserved syntenies or evolutionary rearrangements, many sequence comparisons can be skipped for not all will contain significant signals. Subsequently, the scientific community has developed fast heuristics to perform multiple pairwise comparisons between large sequences to determine whether significant sets of conserved similarities exist. The data generation problem is no longer an issue, yet the limitations have shifted toward the analysis of such massive data. Therefore, we present XCout, a Web-based visual analytics application for multiple genome comparisons designed to improve the analysis of large-scale evolutionary studies using novel techniques in Web visualization. XCout enables to work on hundreds of comparisons at once, thus reducing the time of the analysis by identifying significant signals between chromosomes across multiple species. Among others, XCout introduces several techniques to aid in the analysis of large-scale genome rearrangements, particularly (1) an interactive heatmap interface to display comparisons using automatic color scales based on similarity thresholds to ease detection at first sight, (2) an overlay system to detect individual signal contributions between chromosomes, (3) a tracking tool to trace conserved blocks across different species to perform evolutionary studies, and (4) a search engine to search annotations throughout different species.

Publisher

SAGE Publications

Subject

Applied Mathematics,Computational Mathematics,Computer Science Applications,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3