Applied Machine Learning Toward Drug Discovery Enhancement: Leishmaniases as a Case Study

Author:

Harigua-Souiai Emna1ORCID,Oualha Rafeh1,Souiai Oussama2ORCID,Abdeljaoued-Tej Ines23ORCID,Guizani Ikram1

Affiliation:

1. Laboratory of Molecular Epidemiology and Experimental Pathology-LR16IPT04, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia

2. Laboratory of Bioinformatics, BioMathematics and BioStatistics LR20IPT09, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia

3. Engineering School of Statistics and Information Analysis, University of Carthage, Ariana, Tunisia

Abstract

Drug discovery (DD) research is a complex field with a high attrition rate. Machine learning (ML) approaches combined to chemoinformatics are of valuable input to this field. We, herein, focused on implementing multiple ML algorithms that shall learn from different molecular fingerprints (FPs) of 65 057 molecules that have been identified as active or inactive against Leishmania major promastigotes. We sought to build a classifier able to predict whether a given molecule has the potential of being anti-leishmanial or not. Using the RDkit library, we calculated 5 molecular FPs of the molecules. Then, we implemented 4 ML algorithms that we trained and tested for their ability to classify the molecules into active/inactive classes based on their chemical structure, encoded by the molecular FPs. Best performers were random forest (RF) and support vector machine (SVM), while atom-pair and topology torsion FPs were the best embedding functions. Both models were further assessed on different stratification levels of the dataset and showed stable performances. At last, we used them to predict the potential of molecules within the Food and Drug Administration (FDA)-approved drugs collection to present anti- Leishmania effects. We ranked these drugs according to their anti-Leishmanial probability and obtained in total seven anti- Leishmania agents, previously described in the literature, within the top 10 of each model. This validates the robustness of the approach, the algorithms, and FPs choices as well as the importance of the dataset size and content. We further engaged these molecules into reverse docking experiments on 3D crystal structures of seven well-studied Leishmania drug targets and could predict the molecular targets for 4 drugs. The results bring novel insights into anti-Leishmania compounds.

Publisher

SAGE Publications

Subject

Applied Mathematics,Computational Mathematics,Computer Science Applications,Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3