Augmented expression of RUNX1 deregulates the global gene expression of U87 glioblastoma multiforme cells and inhibits tumor growth in mice

Author:

Bogoch Yoel1,Friedlander-Malik Gilgi2,Lupu Lior1,Bondar Ekaterina1,Zohar Nitzan1,Langier Sheila1,Ram Zvi3,Nachmany Ido1,Klausner Joseph M1,Pencovich Niv1

Affiliation:

1. The Laboratory of Molecular Genetics, Hepatic-Bili-Pancreatic Cancer Research, Department of Surgery B, Tel Aviv Sourasky Medical Center, The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel

2. Bioinformatics Unit, Nancy and Stephen Grand Israel National Center for Personalized Medicine, The Weizmann Institute of Science, Rehovot, Israel

3. Department of Neurosurgery, Tel Aviv Sourasky Medical Center, The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel

Abstract

Glioblastoma multiforme is the most common and aggressive primary brain tumor in adults. A mesenchymal phenotype was associated with tumor aggressiveness and poor prognosis in glioblastoma multiforme patients. Recently, the transcription factor RUNX1 was suggested as a driver of the glioblastoma multiforme mesenchymal gene expression signature; however, its independent role in this process is yet to be described. Here, we assessed the role of RUNX1 in U87 glioblastoma multiforme cells in correspondence to its mediated transcriptome and genome-wide occupancy pattern. Overexpression of RUNX1 led to diminished tumor growth in nude and severe combined immunodeficiency mouse xenograft tumor model. At the molecular level, RUNX1 occupied thousands of genomic regions and regulated the expression of hundreds of target genes, both directly and indirectly. RUNX1 occupied genomic regions that corresponded to genes that were shown to play a role in brain tumor progression and angiogenesis and upon overexpression led to a substantial down-regulation of their expression level. When overexpressed in U87 glioblastoma multiforme cells, RUNX1 down-regulated key pathways in glioblastoma multiforme progression including epithelial to mesenchymal transition, MTORC1 signaling, hypoxia-induced signaling, and TNFa signaling via NFkB. Moreover, master regulators of the glioblastoma multiforme mesenchymal phenotype including CEBPb, ZNF238, and FOSL2 were directly regulated by RUNX1. The data suggest a central role for RUNX1 as master regulator of gene expression in the U87 glioblastoma multiforme cell line and mark RUNX1 as a potential target for novel future therapies for glioblastoma multiforme.

Publisher

IOS Press

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3