Long non-coding RNA CCAT2 promotes cell proliferation and invasion through regulating Wnt/β-catenin signaling pathway in clear cell renal cell carcinoma

Author:

Huang Jian-lin1,Liao Yong1,Qiu Ming-xing1,Li Jun1,An Yu1

Affiliation:

1. Department of Urology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China

Abstract

Clear cell renal cell carcinoma (ccRCC) is a common urologic malignancy. Long non-coding RNA colon cancer–associated transcript 2 (CCAT2) has been suggested as serving pivotal roles in tumorigenesis. However, the clinical significance and biological role of CCAT2 in ccRCC remains elusive. The purpose of this study is to identify the function of CCAT2 in ccRCC and its possible molecular mechanism. Expression of CCAT2 was analyzed in 61 ccRCC tissues and two ccRCC cell lines (786-O and ACHN) by quantitative reverse transcription polymerase chain reaction. The functional roles of CCAT2 in ccRCC were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, colony formation assay, Transwell assay, and flow cytometric analysis. The influence of CCAT2 on tumorigenesis was monitored by in vivo mice xenograft model. The activation of Wnt/β-catenin signaling pathway was evaluated by the TOP/FOP Wnt luciferase reporter assay and western blot assay. CCAT2 expression was markedly higher in ccRCC cell lines and tissues, being positively associated with tumor size and tumor stage in ccRCC patients. Patients with higher CCAT2 expression had a markedly poorer overall survival than did patients with low CCAT2 expression. Knocking down CCAT2 expression led to reduced cell proliferation and increased apoptosis of ccRCC cells in vitro as well as the activation of Wnt/β-catenin signaling pathway, and CCAT2 overexpression remarkably enhanced these oncogenic properties. In vivo mice xenograft model also showed that knocking CCAT2 expression inhibited the growth of ccRCC xenografts. In conclusion, these results indicated that CCAT2 may play a critical role in ccRCC progression and will be further considered as a biomarker for predicting the survival of ccRCC patients and a potential therapeutic target for ccRCC intervention.

Publisher

IOS Press

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3