Specific tumor-derived CCL2 mediated by pyruvate kinase M2 in colorectal cancer cells contributes to macrophage recruitment in tumor microenvironment

Author:

Zou Kejian12,Wang Yaodong3,Hu Yan2,Zheng Liansheng4,Xu Wanfu5,Li Guoxin1

Affiliation:

1. Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China

2. Hainan General Hospital, Haikou, China

3. Traditional Chinese Medicine Hospital of Kunshan, Suzhou, China

4. Baotou Cancer Hospital, Baotou, China

5. Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China

Abstract

Development of colorectal cancer has been considered as a result of imbalance of pro- and anti-inflammatory intestinal microenvironment accompanied by macrophage recruitment. Despite macrophages are implicated in remodeling tumor microenvironment, the mechanism of macrophage recruitment is not fully elucidated yet. In this study, we reported clinical association of highly expressed pyruvate kinase M2 in colorectal cancer with macrophage attraction. The conditioned medium from Caco-2 and HT-29 cells with depleted pyruvate kinase M2 dramatically reduced macrophage recruitment, which is reversed by addition of, a critical chemotaxis factor to macrophage migration, rCCL2. Silencing of endogenous pyruvate kinase M2 markedly decreased CCL2 expression and secretion by real-time quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. Endogenous pyruvate kinase M2 interacted with p65 and mediated nuclear factor-κB signaling pathway and mainly regulated phosphorylation of Ser276 on p65 nuclear factor-κB. In addition, inhibition of macrophage recruitment caused by pyruvate kinase M2 silencing was rescued by ectopic expression of p65. Interestingly, pyruvate kinase M2 highly expressed in colorectal cancer tissue, which is correction with macrophage distribution. Taken together, we revealed a novel mechanism of pyruvate kinase M2 in promoting colorectal cancer progression by recruitment of macrophages through p65 nuclear factor-κB–mediated expression of CCL2.

Publisher

IOS Press

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3