Phylogenetic Relationship Among Brackishwater Vibrio Species

Author:

Ashok Kumar J1ORCID,Vinaya Kumar K1,Avunje S2,Akhil V1,Ashok S1,Kumar Sujeet2,Sivamani B1,Grover Monendra3,Rai Anil3,Alavandi SV2,Vijayan KK1

Affiliation:

1. Nutrition Genetics and Biotechnology Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, India

2. Aquatic Animal Health and Environment Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, India

3. Center for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India

Abstract

Vibriosis is regarded as an important disease of penaeid shrimps affecting larvae in hatcheries. Among the Vibrio species, Vibrio parahaemolyticus, Vibrio vulnificus, Vibrio furnissii, Vibrio campbellii, Vibrio harveyi, Vibrio alginolyticus, and Vibrio anguillarum are often associated with diseases in finfish and shellfish of brackishwater ecosystem. Accurate species differentiating methods for the organisms present in an ecosystem are required for precise classification of the species and to take steps for their management. Conventional methods like 16s rRNA phylogeny and multilocus sequence typing (MLST) have often failed to correctly identify Vibrio species. This has necessitated a comprehensive investigation on methodologies available to distinguish Vibrio species associated with brackishwater aquaculture system. To achieve this, 35 whole genomes belonging to 7 Vibrio species were subjected to phylogenetic analysis based on 16s rRNA gene, MLST genes, single-copy orthologous genes, and single-nucleotide polymorphisms. In addition, genome-based similarity indices like average nucleotide identity (ANI) and in silico DNA-DNA hybridization (DDH) were computed as confirmatory tests to verify the phylogenetic relations. There were some misclassifications occurred regarding phylogenetic relations based on 16s rRNA genes and MLST genes, while phylogeny with single-copy orthologous genes produced accurate species-level clustering. Study reveals that the species identification based on whole genome-based estimates or genome-wide variants are more precise than the ones done with single or subset of genes.

Publisher

SAGE Publications

Subject

Computer Science Applications,Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3