Computational Structural and Functional Analyses of ORF10 in Novel Coronavirus SARS-CoV-2 Variants to Understand Evolutionary Dynamics

Author:

Mishra Seema1ORCID

Affiliation:

1. Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India

Abstract

Introduction:In an effort to combat SARS-CoV-2 through multi-subunit vaccine design, during studies using whole genome and immunome, ORF10, located at the 3′ end of the genome, displayed unique features. It showed no homology to any known protein in other organisms, including SARS-CoV. It was observed that its nucleotide sequence is 100% identical in the SARS-CoV-2 genomes sourced worldwide, even in the recent-most VoCs and VoIs of B.1.1.529 (Omicron), B.1.617 (Delta), B.1.1.7 (Alpha), B.1.351 (Beta), and P.1 (Gamma) lineages, implicating its constant nature throughout the evolution of deadly variants.Aim:The structure and function of SARS-CoV-2 ORF10 and the role it may play in the viral evolution is yet to be understood clearly. The aim of this study is to predict its structure, function, and understand evolutionary dynamics on the basis of mutations and likely heightened immune responses in the immunopathogenesis of this deadly virus.Methods:Sequence analysis, ab-initio structure modeling and an understanding of the impact of likely substitutions in key regions of protein was carried out. Analyses of viral T cell epitopes and primary anchor residue mutations was done to understand the role it may play in the evolution as a molecule with likely enhanced immune response and consequent immunopathogenesis.Results:Few amino acid substitution mutations are observed, most probably due to the ribosomal frameshifting, and these mutations may not be detrimental to its functioning. As ORF10 is observed to be an expressed protein, ab-initio structure modeling shows that it comprises mainly an α-helical region and maybe an ER-targeted membrane mini-protein. Analyzing the whole proteome, it is observed that ORF10 presents amongst the highest number of likely promiscuous and immunogenic CTL epitopes, specifically 11 out of 30 promiscuous ones and 9 out of these 11, immunogenic CTL epitopes. Reactive T cells to these epitopes have been uncovered in independent studies. Majority of these epitopes are located on the α-helix region of its structure, and the substitution mutations of primary anchor residues in these epitopes do not affect immunogenicity. Its conserved nucleotide sequence throughout the evolution and diversification of virus into several variants is a puzzle yet to be solved.Conclusions:On the basis of its sequence, structure, and epitope mapping, it is concluded that it may function like those mini-proteins used to boost immune responses in medical applications. Due to the complete nucleotide sequence conservation even a few years after SARS-CoV-2 genome was first sequenced, it poses a unique puzzle to be solved, in view of the evolutionary dynamics of variants emerging in the populations worldwide.

Publisher

SAGE Publications

Subject

Computer Science Applications,Genetics,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3