Screening of Important Markers in Peripheral Blood Mononuclear Cells to Predict Female Osteoporosis Risk Using LASSO Regression Algorithm and SVM Method

Author:

Tang Hongwei1,Han Qingtian1,Yin Yong1ORCID

Affiliation:

1. Department of Orthopedics, Jiading District Central Hospital Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China

Abstract

Background: Osteoporosis is a bone disease that increases the patient’s risk of fracture. We aimed to identify robust marker genes related to osteoporosis based on different bioinformatic methods and multiple datasets. Methods: Three datasets from Gene Expression Omnibus (GEO) were utilized for analysis separately. Significantly differentially expressed genes (DEGs) from comparing high hip and low hip low bone mineral density (BMD) groups in the first dataset were identified for Gene Ontology (GO), Gene set enrichment analysis (GSEA) and Kyoto encyclopedia of genes and genomes (KEGG) to investigate the discrepantly enriched biological processes between high hip and low hip group. Last absolute shrinkage and selection operator (LASSO), SVM model and protein-protein interaction (PPI) regulatory network were performed and generated robust marker genes for downstream TF-target and miRNA-target prediction. Results: Several DEGs between high hip BMD group and low hip BMD group were obtained. And the metabolism-related pathways such as metabolic pathways, carbon metabolism, glyoxylate and dicarboxylate metabolism shown enrichment in these DEGs. Integration with LASSO regression analysis, 8 differential expression genes ( SH3BP1, NARF, ANKRD34B, RNF40, ZNF473, AKT1, SHMT1, and VASH1) in GSE62402 were identified as the optimal differential genes combination. Moreover, the SVM validation analysis in GSE56814 and GSE56815 datasets showed that the characteristic gene combinations presented high diagnostic effects, and the model AUC areas for GSE56814 was 0.899 and for GSE56815 was 0.921. Furthermore, the subcellular localization analysis of the 8 genes revealed that 4 proteins were located in the cytoplasm, 3 proteins were located in the nucleus, and 1 protein was located in the mitochondria. Additionally, the related TFs and miRNAs by performing TF-target and miRNA-target prediction for 5 genes ( AKT1, SHMT1, ZNF473, RNF40 and VASH1) were investigated from PPI network. Conclusion: The optimal differential genes combination ( SH3BP1, NARF, ANKRD34B, RNF40, ZNF473, AKT1, SHMT1, and VASH1) presented high diagnostic effect for osteoporosis risk.

Publisher

SAGE Publications

Subject

Computer Science Applications,Genetics,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3