Bioinformatics Workflows With NoSQL Database in Cloud Computing

Author:

Wercelens Polyane1ORCID,da Silva Waldeyr12ORCID,Hondo Fernanda1,Castro Klayton1,Walter Maria Emília1,Araújo Aletéia1,Lifschitz Sergio3ORCID,Holanda Maristela1ORCID

Affiliation:

1. Department of Computer Science, University of Brasília, Brasília, Brazil

2. NEPBIO (Group of Biological Studies and Research on Cerrado), Federal Institute of Goiás (IFG), Formosa, Goiás, Brazil

3. Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil

Abstract

Scientific workflows can be understood as arrangements of managed activities executed by different processing entities. It is a regular Bioinformatics approach applying workflows to solve problems in Molecular Biology, notably those related to sequence analyses. Due to the nature of the raw data and the in silico environment of Molecular Biology experiments, apart from the research subject, 2 practical and closely related problems have been studied: reproducibility and computational environment. When aiming to enhance the reproducibility of Bioinformatics experiments, various aspects should be considered. The reproducibility requirements comprise the data provenance, which enables the acquisition of knowledge about the trajectory of data over a defined workflow, the settings of the programs, and the entire computational environment. Cloud computing is a booming alternative that can provide this computational environment, hiding technical details, and delivering a more affordable, accessible, and configurable on-demand environment for researchers. Considering this specific scenario, we proposed a solution to improve the reproducibility of Bioinformatics workflows in a cloud computing environment using both Infrastructure as a Service (IaaS) and Not only SQL (NoSQL) database systems. To meet the goal, we have built 3 typical Bioinformatics workflows and ran them on 1 private and 2 public clouds, using different types of NoSQL database systems to persist the provenance data according to the Provenance Data Model (PROV-DM). We present here the results and a guide for the deployment of a cloud environment for Bioinformatics exploring the characteristics of various NoSQL database systems to persist provenance data.

Publisher

SAGE Publications

Subject

Computer Science Applications,Genetics,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3