MEESSI-AHF risk score performance to predict multiple post-index event and post-discharge short-term outcomes

Author:

Rossello Xavier12,Bueno Héctor234,Gil Víctor5,Jacob Javier6,Javier Martín-Sánchez Francisco278,Llorens Pere9,Herrero Puente Pablo10,Alquézar-Arbé Aitor11,Raposeiras-Roubín Sergio212,López-Díez M Pilar13,Pocock Stuart214,Miró Òscar5

Affiliation:

1. Cardiology Department, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, Spain

2. Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Spain

3. Instituto de Investigación i+12 and Cardiology Department, Hospital Universitario 12 de Octubre, Spain

4. Facultad de Medicina, Universidad Complutense de Madrid, Spain

5. Emergency Department, Hospital Clínic i Provincial de Barcelona, University of Barcelona, Spain

6. Emergency Department, Hospital Universitari de Bellvitge, Spain

7. Emergency Department, Hospital Clínico San Carlos, Spain

8. Instituto de Investigación Sanitaria San Carlos (IdISSC), Universidad Complutense de Madrid, Spain

9. Emergency Department, Hospital General de Alicante, Spain

10. Emergency Department, Hospital Universitario Central de Asturias, Spain

11. Emergency Department, Hospital de la Santa Creu i Sant Pau, Spain

12. Department of Cardiology, University Hospital Álvaro Cunqueiro, Spain

13. Emergency Department, Hospital Universitario de Burgos, Spain

14. Department of Medical Statistics, London School of Hygiene and Tropical Medicine, UK

Abstract

Abstract Background The multiple estimation of risk based on the emergency department Spanish score in patients with acute heart failure (MEESSI-AHF) is a risk score designed to predict 30-day mortality in acute heart failure patients admitted to the emergency department. Using a derivation cohort, we evaluated the performance of the MEESSI-AHF risk score to predict 11 different short-term outcomes. Methods Patients with acute heart failure from 41 Spanish emergency departments (n=7755) were recruited consecutively in two time periods (2014 and 2016). Logistic regression models based on the MEESSI-AHF risk score were used to obtain c-statistics for 11 outcomes: three with follow-up from emergency department admission (inhospital, 7-day and 30-day mortality) and eight with follow-up from discharge (7-day mortality, emergency department revisit and their combination; and 30-day mortality, hospital admission, emergency department revisit and their two combinations with mortality). Results The MEESSI-AHF risk score strongly predicted mortality outcomes with follow-up starting at emergency department admission (c-statistic 0.83 for 30-day mortality; 0.82 for inhospital death, P=0.121; and 0.85 for 7-day mortality, P=0.001). Overall, mortality outcomes with follow-up starting at hospital discharge predicted slightly less well (c-statistic 0.80 for 7-day mortality, P=0.011; and 0.75 for 30-day mortality, P<0.001). In contrast, the MEESSI-AHF score predicted poorly outcomes involving emergency department revisit or hospital admission alone or combined with mortality (c-statistics 0.54 to 0.62). Conclusions The MEESSI-AHF risk score strongly predicts mortality outcomes in acute heart failure patients admitted to the emergency department, but the model performs poorly for outcomes involving hospital admission or emergency department revisit. There is a need to optimise this risk score to predict non-fatal events more effectively.

Funder

Instituto de Salud Carlos III

Spanish Ministry of Health

FEDER

Fundació La Marató de TV3

Pathologies research group

IDIBAPS

GRC

instituto de salud carlos iii

fundació la marató de tv3

generalitat de catalunya

Publisher

Oxford University Press (OUP)

Subject

Cardiology and Cardiovascular Medicine,Critical Care and Intensive Care Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3