Affiliation:
1. Department of Industrial Engineering, Ajou University, Suwon, Korea
Abstract
A manufacturing system consists of various manufacturing devices, and each device has a set of tasks which are triggered by specific commands. Traditionally, simulation has been considered as an essential technology for the evaluation and analysis of manufacturing systems. Although discrete event system specification formalism has been a popular modeling tool for manufacturing systems, it has limitations in describing situations such as sudden cancelation of tasks. Proposed in this article is an extended discrete event system specification formalism for the effective description of a smart factory which requires the intelligence to handle turbulences in real-time production. The extended discrete event system specification formalism incorporates the configuration space concept, which is well-known in classical mechanics. While the conventional discrete event system specification formalism uses only the logical states set to represent the device states, the proposed formalism employs the combination of two sets: a logical states set (sequential states set) and a physical states set (configuration space of the device). As a result, the extended formalism enables the effective description of nondeterministic tasks which may occur frequently in a smart factory.
Funder
Ministry of Land, Infrastructure and Transport of the Korean
Subject
Computer Science Applications,General Engineering,Modelling and Simulation
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献