Conceptual design conceptual scheme optimization based on integrated design objectives

Author:

Jiang Shaofei1,Jing Liting1,Peng Xiang1,Chai Hao1,Li Jiquan1

Affiliation:

1. Key Laboratory of Special Equipment Manufacturing and Advanced Process Technology, Ministry of Education, Zhejiang University of Technology, Hangzhou, China

Abstract

In the early conceptual design process, a large number of conceptual schemes can be selected. However, existing studies primarily focused on mapping from the function to the principle solution and then evaluating the principle scheme. Currently, many concept selection methods are used for a small number of feasible schemes, thus not addressing a large number of initial conceptual schemes. As the scheme design is objective oriented, a reasonable design objective constraint should be considered when optimizing many schemes to avoid conflict between the conceptual scheme and the design objectives. This approach can quickly eliminate many unreasonable schemes produced by the principle of free combination. To address this problem, we propose a method for optimizing the conceptual design scheme based on integrated design objectives. First, the product design objectives and sub-objectives are obtained based on the functional requirements. A user requirement matrix is then created to cluster and analyse the sub-objectives. Second, a cooperative game model is created to coordinate sub-objective contradictions. Then, the game player and the strategy set are defined via secondary clustering, and the strategy utility is calculated to create a game utility matrix for each objective. Finally, the eigenfunction is analysed to obtain the strategy set satisfying the maximum requirement interest, which is applied in principle scheme optimization to quickly filter unreasonable schemes. The conceptual design of a transmission device is used as an example of the rapidly implemented optimization of the conceptual schemes.

Funder

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Computer Science Applications,General Engineering,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3