Game-relationship-based remanufacturing scheduling model with sequence-dependent setup times using improved discrete particle swarm optimization algorithm

Author:

Zhang Shuai1ORCID,Xu Huifen1,Zhang Hua1ORCID,Yang Sihan1

Affiliation:

1. School of Information Management and Artificial Intelligence, Zhejiang University of Finance and Economics, Hangzhou, China

Abstract

Remanufacturing has become a Frontier technology in sustainable manufacturing and enables end-of-life products to be restored to their new conditions. Although remanufacturing scheduling has been widely investigated, the relationship between remanufacturers and customers is rarely examined. Therefore, a new game-relationship-based remanufacturing scheduling model with sequence-dependent setup times is proposed herein. In the model, the relationship between the remanufacturer and customers is constructed as a non-cooperative game, and the interval due dates are set based on the uncertain product quality to achieve effective remanufacturing and improve customer satisfaction. Multiple remanufacturing lines differentiated based on the quality grade of products are integrated into the proposed model. In addition, sequence-dependent setup times are considered in the model, which depend on the similarity between two adjacent tasks processed on a reprocessing unit. An improved discrete particle swarm optimization algorithm is proposed to obtain Nash equilibrium solutions via an efficient global search structure and a local search strategy. The algorithm is embedded with the Nash equilibrium solution evaluation method and integrated with multiple genetic operators to update the particles. The performance of the proposed algorithm in solving the proposed model is verified via a comparison with three baseline algorithms for managing different problem instances.

Funder

National Natural Science Foundation of China

Zhejiang Key R and D Project of China

Publisher

SAGE Publications

Subject

Computer Science Applications,General Engineering,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3