An efficient resource prediction–based scheduling technique for scientific applications in cloud environment

Author:

Kaur Gurleen1ORCID,Bala Anju1

Affiliation:

1. Computer Science & Engineering Department, Thapar Institute of Engineering & Technology, Patiala, India

Abstract

Cloud computing makes scientists to run complex scientific applications. The research community is able to access on-demand compute resources within a short span of time instead of experiencing peak demand bottlenecks. As the demand for cloud resources is dynamic and volatile in nature, this in turn affects the availability of resources during scheduling. In order to allocate sufficient resources for scientific applications with different execution requirements, it is necessary to predict the appropriate set of resources. To attain this objective, a resource prediction–based scheduling technique has been introduced which automates the resource allocation for scientific application in virtualized cloud environment. First, the proposed prediction model is trained on the dataset generated by concurrently deploying tasks of a scientific application on cloud. Then, the resources are scheduled based on the output of proposed prediction technique. The main objective of resource prediction–based scheduling technique is to efficiently handle the resources for virtual machines in order to reduce the execution time, error rate, and improve the accuracy.

Funder

Council of Scientific and Industrial Research

Publisher

SAGE Publications

Subject

Computer Science Applications,General Engineering,Modelling and Simulation

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3