Machine learning-based design features decision support tool via customers purchasing data analysis

Author:

Zhang Jian12,Chu Xingpeng2,Simeone Alessandro12,Gu Peihua3

Affiliation:

1. Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou, China

2. Department of Mechanical Engineering, Shantou University, Shantou, China

3. School of Mechanical Engineering, Tianjin University, Tianjin, China

Abstract

Decision-making on design features such as specifications and components is an essential aspect of new product development. Customers product preferences and their variations provide the basis of design features decision. Big data of product sales are an emerging source for the obtaining of customers preferences on product features. In this work, a machine learning-based design features decision support tool is proposed through big sales data analysis. Customers preferred product features and their combinations are predicted based on the sales data. Physical feasibility of the product features combinations is considered for customers preference analysis. Cluster analysis method is proposed to identify common and alternative design of product features. Based on specification/component relationships, design features decisions of product components are carried out by grouping product component into noncritical, common, and alternative components. A case study on electric toy cars was included to illustrate the effectiveness of the proposed method.

Funder

national natural science foundation of china

National Key R&D Program of China

Publisher

SAGE Publications

Subject

Computer Science Applications,General Engineering,Modeling and Simulation

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3