A coordination method for concurrent design and a collaboration tool for parametric system models

Author:

Knoll Dominik1,Golkar Alessandro1

Affiliation:

1. Skolkovo Institute of Science and Technology, Moscow, Russia

Abstract

This work presents a method and a tool for conducting conceptual design studies for projects such as a space exploration mission and a satellite constellation in a concurrent manner in both time and space, while taking into account the structure of the system to design and the dependencies between the system’s constituting elements. Design work is parallelized to reduce the time required to converge to a solution for a preliminary design, which includes the system architecture, its detailed requirements, and its costs. The multidisciplinary team of designers works in colocation to leverage effective direct human interaction for discussing design trade-offs quickly. While this is practice in space agencies for mission feasibility studies, a common methodology was not described so far. Our work proposes a method for the coordination of discipline experts and the sequence of activities performed during conceptual design studies, which use integrated parametric system models. Our method reduces the number of design iterations by applying a design structure matrix clustering algorithm to the system model and deriving a schedule for the design session. We also describe the tool Concurrent Engineering Data Exchange Skoltech we developed for collaborative work on the parametric system models and serve as an instrument for research on complex system design methodologies. The tool features a fast synchronization mechanism for the concurrent work of multiple design experts, and it supports our coordination method for concurrent design studies. The tool was published as open-source software, so other researchers can use it and build upon it. We used our tool and applied the method to two case studies of preliminary satellite designs and tested them with groups of students of a satellite engineering class and researchers from our institute. Throughout the experiments, we recorded information about user interactions and collected user feedback for the evaluation of the coordination method and the collaboration tool. Both method and tool demonstrated their validity in our experimental setting.

Publisher

SAGE Publications

Subject

Computer Science Applications,General Engineering,Modeling and Simulation

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. When Do Concurrent Design Facilities Need to Be Flexible? Understanding the Limits of Fit With Novel Problem Types;Journal of Mechanical Design;2022-11-01

2. MBSE Challenges in the Concurrent Preliminary Design of CubeSats: Nanospace Study;2022 IEEE International Systems Conference (SysCon);2022-04-25

3. Investigating the Effectiveness of a Causal MBSE Software Tool in Modelling CubeSat Conceptual Design Data;Product Lifecycle Management. Green and Blue Technologies to Support Smart and Sustainable Organizations;2022

4. Open-source Framework for the Concurrent Design of CubeSats;2021 IEEE International Symposium on Systems Engineering (ISSE);2021-09-13

5. Agile methodologies applied to Integrated Concurrent Engineering for spacecraft design;Research in Engineering Design;2021-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3