A communicating object’s approach for smart logistics and safety issues in warehouses

Author:

Trab Sourour1,Bajic Eddy2,Zouinkhi Ahmed1,Thomas André2,Abdelkrim Mohamed Naceur1,Chekir Hassen3,Ltaief Radhouane Hadj3

Affiliation:

1. MACS Laboratory: Modeling, Analysis and Control of Systems, National Engineering School of Gabes (ENIG), University of Gabes, Tunisia

2. CRAN UMR 7039 CNRS, Université de Lorraine, Nancy, France

3. Groupe Chimique Tunisien, Industrial Zone, Gabes, Tunisia

Abstract

A communicating object, or connected object, is a key element of the Internet of Things to shift a perceptible real world into a wide digital virtual world known as the cyber-physical system. Knowing that sustainability, safety, and logistic issues are among the significant goals and challenges of modern industrial enterprises, the communicating object can be a relevant concept to guarantee safety performance in logistics and warehouse management. This article presents the impacts and advantages of the communicating object in smart logistics and the design of a communicating object model inspired from Internet of Things European research projects, which controls and monitors safety risks in a hazardous and chemical industrial context. Generic safety-based scenarios are presented, which rely on a set of negotiated interaction mechanisms for storage and picking. The relevant deployment of intelligence in a warehouse management system leads to propose a new concept called “IoT-controlled Safe Area.” Our contribution is to bring informational, communicational, and decisional capabilities close to the warehousing physical world thanks to the communicating object. This enables achieving safety assurance with a decrease in the decision-making delay and an increase in the solving efficiency of local and dynamic disruptions, while avoiding inherent shortcomings of the warehouse management system centralization. For this, an industrial implementation is presented.

Publisher

SAGE Publications

Subject

Computer Science Applications,General Engineering,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3