An optimal strategy for sustainable IoT device placements for agriculture

Author:

Tirupathi Puppala1ORCID,Niranjan Polala2

Affiliation:

1. Computer Science and Engineering, Kakatiya University, Warangal, India

2. Computer Science and Engineering, Kakatiya Institute of Technology and Science, Warangal, India

Abstract

In recent years, there has been a significant increase in the adaptation of current computer methodologies to tackle issues from different fields. Education, medical research, and agriculture are just a few of the fields that have seen fast development as a result of the rapid advancements in contemporary computer technology. These advancements may be seen in the form of more complex technology as well as enhanced algorithms for data processing. One such advancement is the Internet of Things (IoT)-based computing. Smart agricultural processes are being built with the use of Internet of Things (IoT) device-oriented solutions, which are becoming more popular. Nonetheless, the application of IoT devices to tackle these issues across a wide range of fields is fraught with a number of difficulties. The primary challenges are the high cost of deployment, the capacity or sustainability of the deployed device sets due to the limitations of battery technology, and, finally, the maintainability of these devices remotely due to the lack of an adequate communication infrastructure for IoT devices, all of which are significant obstacles. In particular, the adaption of Internet of Things solutions for agriculture has these previously discussed issues to a higher extent. In recent years, a slew of parallel research outputs has emerged, all of which are geared at finding solutions to these issues. Nonetheless, these parallel study outputs or current remedies have been criticized for not addressing all of the issues, but rather for focusing on just one of the three issues that have been identified as problematic. Thus, this study indicates the need, and possibility for developing a framework that may be used to address all of the challenges that have been identified. To begin, the recommended method, which is proven in the work, provides an automated procedure to assess the farm field, and then proposes the most ideal design for placing the Internet of Things devices. This study exhibits a unique application of the curve fitting approach for range, and power awareness, as well as a novel deployment of an optimization method for range, and power awareness, in order to determine the most optimum, and cost-effective deployment map or plan. Second, this study provides a technique for collecting sensor data in the most efficient manner possible, allowing any analytical engine to be constructed on top of the suggested architecture. According to the suggested framework, response time has been reduced by 15%, and average churn rates have been reduced by almost 20% when compared to the results of parallel research, resulting in increased network sustainability when compared to the results of parallel research results.

Publisher

SAGE Publications

Subject

Computer Science Applications,General Engineering,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3